
LÝ THUYẾT TOÁN LỚP 5 CHƯƠNG 1
Quý phụ huynh và học sinh cần quan tâm: Tất cả về Toán lớp 5
PHẦN MỘT SỐ VÀ CHỮ SỐ
I. KIẾN THỨC CẦN GHI NHỚ
1. Dùng 10 chữ số để viết số là: 0, 1, 2, 3, 4, 5, 6, 7, 8 ,9.chữ số đầu tiên kể từ bên trái của một số tự nhiên phảI khác 0 .
2. Có 10 số có 1 chữ số: (Từ số 0 đến số 9)
Có 90 số có 2 chữ số: (từ số 10 đến số 99)
Có 900 số có 3 chữ số: (từ số 100 đến 999)
…
3. Số tự nhiên nhỏ nhất là số 0. Không có số tự nhiên lớn nhất.
4. Hai số tự nhiên liên tiếp hơn (kém) nhau 1 đơn vị.
5. Các số có chữ số tận cùng là 0, 2, 4, 6, 8 gọi là số chẵn. Hai số chẵn liên tiếp hơn (kém) nhau 2 đơn vị.
6. Các số có chữ số tận cùng là 1, 3, 5, 7, 9 gọi là số lẻ. Hai số lẻ liên tiếp hơn (kém) nhau 2 đơn vị.
7.Hai số chắn liên tiếp hơn kém nhau 2 đơn vị .
8.Hai số lẻ liên tiếp hơn kém nhau 2 đơn vị .
9. Quy tắc so sánh hai số tự nhiên :
a.Trong hai số tự nhiên ,số nào có nhiều chữ số hơn sẽ lớn hơn.
b.Nếu hai số có chữ số bằng nhau thì số nào có chữ số đầu tiên kể từ trái sang phải lớn hơn sẽ lớn hơn.
____________________________________________
PHẦN HAI CÁC BÀI TOÁN DÙNG CHỮ THAY SỐ
I. KIẾN THỨC CẦN NHỚ
1. Sử dụng cấu tạo thập phân của số
1.1. Phân tích làm rõ chữ số
ab = a x 10 + b
abc = a x 100 + b x 10 + c
Ví dụ: Cho số có 2 chữ số, nếu lấy tổng các chữ số cộng với tích các chữ số của số đã cho thì bằng chính số đó. Tìm chữ số hàng đơn vị của số đã cho.
Bài giải
Bước 1 (tóm tắt bài toán)
Gọi số có 2 chữ số phải tìm là (a > 0, a, b < 10)
Theo bài ra ta có = a + b + a x b
Bước 2: Phân tích số, làm xuất hiện những thành phần giống nhau ở bên trái và bên phải dấu bằng, rồi đơn giản những thành phần giống nhau đó để có biểu thức đơn giản nhất.
a x 10 + b = a + b + a x b
a x 10 = a + a x b (cùng bớt b)
a x 10 = a x (1 + b) (Một số nhân với một tổng)
10 = 1 + b (cùng chia cho a)
Bước 3: Tìm giá trị :
b = 10 – 1
b = 9
Bước 4 : (Thử lại, kết luận, đáp số)
Vậy chữ số hàng đơn vị của số đó là: 9.
Đáp số: 9
1.2. Phân tích làm rõ số
= + b
= + + c
= + + + d
= +
…
Ví dụ : Tìm một số có 2 chữ số, biết rằng khi viết thêm số 21 vào bên trái số đó thì ta được một số lớn gấp 31 lần số cần tìm.
Bài giải
Bước 1: Gọi số phải tìm là (a > 0, a, b < 0)
Khi viết thêm số 21 vào bên trái số ta được số mới là .
Theo bài ra ta có:
= 31 x
Bước 2: 2100 + = 31 x (phân tích số = 2100 + )
2100 + = (30 + 1) x
2100 + = 30 x + (một số nhân một tổng)
2100 = x 30 (cùng bớt )
Bước 3: = 2100 : 30
= 70.
Bước 4: Thử lại
2170 : 70 = 31 (đúng)
Vậy số phải tìm là: 70
Đáp số: 70.
2. Sử dụng tính chất chẵn lẻ và chữ số tận cùng của số tự nhiên
2.1. Kiến thức cần ghi nhớ
– Số có tận cùng là 0, 2, 4, 6, 8 là số chẵn.
– Số có tận cùng là: 1, 3, 5, 7, 9 là các số lẻ.
– Tổng (hiệu) của 2 số chẵn là một số chẵn.
– Tổng (hiệu ) của 2 số lẻ là một số chẵn.
– Tổng (hiệu) của một số lẻ và một số chẵn là một số lẻ.
– Tổng của hai số tự nhiên liên tiếp là một số lẻ.
– Tích có ít nhất một thừa số chẵn là một số chẵn.
– Tích của a x a không thể có tận cùng là 2, 3, 7 hoặc 8.
2.2.Ví dụ: Tìm một số có 2 chữ số, biết rằng số đó gấp 6 lần chữ số hàng đơn vị của nó.
Bài giải
Cách 1:
Bước 1: Gọi số phải tìm là (0 < a < 10, b < 10).
Theo đề bài ta có: = 6 x b
Bước 2: Sử dụng tính chất chẵn lẻ hoặc chữ số tận cùng.
Vì 6 x b là một số chẵn nên là một số chẵn.
b > 0 nên b = 2, 4, 6 hoặc 8.
Bước 3: Tìm giá trị bằng phương pháp thử chọn
Nếu b = 2 thì = 6 x 2 = 12. (chọn)
Nếu b = 4 thì = 6 x 4 = 24. (chọn)
Nếu b = 6 thì = 6 x 6 = 36. (chọn)
Nếu b = 8 thì = 6 x 8 = 48. (chọn)
Bước 4: Vậy ta được 4 số thoả mãn đề bài là: 12, 24, 36, 48.
Đáp số: 12, 24, 36, 48.
Cách 2:
Bước 1: Gọi số phải tìm là (0 < a < 10, b < 10)
Theo đề bài ta có: = 6 x b
Bước 2: Xét chữ số tận cùng
Vì 6 x b có tận cùng là b nên b chỉ có thể là: 2, 4, 6 hoặc 8.
Bước 3: Tìm giá trị bằng phương pháp thử chọn
Nếu b = 2 thì = 6 x 2 = 12 (chọn)
Nếu b = 4 thì = 6 x 4 = 24 (chọn)
Nếu b = 6 thì = 6 x 6 = 36 (chọn)
Nếu b = 8 thì = 6 x 8 = 48 (chọn)
Bước 4: Vậy ta được 4 số thoả mãn đề bài là: 12, 24, 36, 48.
Đáp số: 12, 24, 36, 48.
3. Sử dụng kỹ thuật tính khi thực hiện phép tính
3.1. Một số kiến thức cần ghi nhớ
Trong phép cộng, khi cộng 2 chữ số trong cùng một hàng thì có nhớ nhiều nhất là 1 nên chỉ có thể là 11 hoặc 12.
– Nếu = 11 thì = 1188 + 11 = 1199.
– Nếu = 12 thì = 1188 + 12 = 1200.
Bước 3: (kết luận và đáp số)
Vậy ta tìm được 2 số thoả mãn đề bài là: 1199 và 1200.
Đáp số: 1199 và 1200.
4. Xác định giá trị lớn nhất hoặc giá trị nhỏ nhất của một số hoặc một biểu thức:
4.1. Một số kiến thức càn ghi nhớ
– Một số có 2; 3; 4; … chữ số thì tổng các chữ số có giá trị nhỏ nhất là 1 và giá trị lớn nhất lần lượt là: 9 x 2 = 18; 9 x 3 = 27; 9 x 4 = 36; …
– Trong tổng (a + b) nếu thêm vào a bao nhiêu đơn vị và bớt đi ở b bấy nhiêu đơn vị (hoặc ngược lại) thì tổng vẫn không thay đổi. Do đó nếu (a + b) không đổi mà khi a đạt giá trị lớn nhất có thể thì b sẽ đạt giá trị nhỏ nhất có thể và ngược lại. Giá trị lớn nhất của a và b phải luôn nhỏ hơn hoặc bằng tổng (a + b).
– Trong một phép chia có dư thì số chia luôn lớn hơn số dư.
5. Tìm số khi biết mối quan hệ giữa các chữ số:
Ví dụ: Tìm số có 3 chữ số, biét chữ số hàng trăm gấp đôi chữ số hàng chục, chữ số hàng chục gấp 3 lần chữ số hàng đơn vị.
Bài giải
Gọi số phải tìm là (0 < a < 10; b, c < 10).
Vì a = 2 x b và b = 3 x c nên a = 2 x 3 x c = 6 x c, mà 0 < a < 10 nên 0 < 6 x c < 10.
Suy ra 0 < c < 2. Vậy c = 1.
Nếu c = 1 thì b = 1 x 3 = 3
a = 3 x 2 = 6
Vậy số phải tìm là: 631.
Đáp số: 631
6. Phối hợp nhiều cách giải:
Ví dụ: Tìm số có 3 chữ số, biết rằng nếu số đó cộng với tổng các chữ số của nó thì bằng 555.
Bài giải
Gọi số phải tìm là (a > 0; a, b, c < 10).
Theo đầu bài ta có: + a + b + c = 555.
Nhìn vào biểu thức trên, ta thấy đây là phép cộng không có nhớ sang hàng trăm.
Vậy a = 5.
Khi đó ta có: + 5 + b + c = 555
500 + + 5 + b + c = 555
505 + + c + c = 555
+ c x 2 = 555 – 505
+ c x 2 = 50
Nếu c đạt giá trị lớn nhất là 9 thì đạt giá trị nhỏ nhất là :
50 – 9 x 2 = 32, do đó b > 2.
Vì + c x 2 = 50 nên < 50 nên b < 5.
Vì 2 < b < 5 nên b = 3 hoặc 4
Vì c x 2 và 50 đều là số chẵn nên b phải là số chẵn. Do đó b = 4.
Khi đó ta có:
44 + c x 2 = 50
c x 2 = 50 – 44
c x 2 = 6
c = 6 : 2 = 3
Vậy = 543
Thử lại 543 + 5 + 4 + 3 = 555 (đúng)
Vậy số phải tìm là: 543.
Đáp số: 543
______________________________________
PHẦN BA DÃY SỐ
I. KIẾN THỨC CẦN GHI NHỚ
1. Đối với số tự nhiên liên tiếp :
a) Dãy số tự nhiên liên tiếp bắt đầu là số chẵn kết thúc là số lẻ hoặc bắt đầu là số lẻ và kết thúc bằng số chẵn thì số lượng số chẵn bằng số lượng số lẻ.
b) Dãy số tự nhiên liên tiếp bắt đầu bằng số chẵn và kết thúc bằng số chẵn thì số lượng số chẵn nhiều hơn số lượng số lẻ là 1.
c) Dãy số tự nhiên liên tiếp bắt đầu bằng số lẻ và kết thúc bằng số lẻ thì số lượng số lẻ nhiều hơn số lượng số chẵn là 1.
2. Một số quy luật của dãy số thường gặp:
a) Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng liền trước nó cộng hoặc trừ một số tự nhiên d.
b) Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng liền trước nó nhân hoặc chia một số tự nhiên q (q > 1).
g) Mỗi số hạng (kể từ số hạng thứ 2) bằng tổng số hạng đứng liền trước nó cộng với số
cộng với số chỉ thứ tự của số hang đó rồi cộng với số tự nhiên d .
k) Mỗi số hạng (kể từ số hạng thứ 2) bằng số hạng đứng liền trước nó nhân với số chỉ thứ tự của số hạng đó.
P ) Mỗi số hạng (kể từ số hạng thứ 2) bằng tổng số hạng đứng liền trước nó nhân với số tự nhiên d rồi nhân với số chỉ thứ tự của số hạng đó .
c) Mỗi số hạng (kể từ số hạng thứ 3) bằng tổng hai số hạng đứng liền trước nó.
h) Mỗi số hạng (kể từ số hạng thứ 3) bằng tích hai số hạng đứng liền trước nó.
d) Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng của ba số hạng đứng liền trước nó.
e) Mỗi số hạng (kể từ số hạng thứ 4) bằng tổng các số hạng đứng liền trước nó cộng với số tự nhiên d rồi cộng với số thứ tự của số hạng ấy.
i) Mỗi số hạng (kể từ số hạng thứ 4) bằng tích của ba số hạng đứng liền trước nó.
l) Mỗi số hạng đứng sau bằng số hạng đứng liền trước nó nhân với số thứ tự của số hạng ấy.
m) Mỗi số hạng bằng số thứ tự của nó nhân với số thứ tự của số hạng đứng liền sau nó.
n) Mỗi số hạng bằng số thứ tự của số hạng đó nhân với số liền sau của số thứ tự.s
3. Dãy số cách đều:
a) Tính số lượng số hạng của dãy số cách đều:
Số số hạng = (Số hạng cuối – Số hạng đầu) : d + 1
(d là khoảng cách giữa 2 số hạng liên tiếp)
Ví dụ: Tính số lượng số hạng của dãy số sau:
1, 4, 7, 10, 13, 16, 19, …, 94, 97, 100.
Ta thấy:
4 – 1 = 3
7 – 4 = 3
10 – 7 = 3 …
97 – 94 = 3
100 – 97 = 3
Vậy dãy số đã cho là dãy số cách đều, có khoảng cách giữa 2 số hạng liên tiếp là 3 đơn vị. Nên số lượng số hạng của dãy số đã cho là:
(100 – 1) : 3 + 1 = 34 (số hạng)
b) Tính tổng của dãy số cách đều:
Ví dụ : Tổng của dãy số 1, 4, 7, 10, 13, …, 94, 97, 100 là
= 1717
___________________________________________
PHẦN BỐN BẢNG ĐƠN VỊ ĐO
A. Kiến thức cần ghi nhớ
1. Bảng đơn vị đo thời gian
1 giờ = 60 phút; 1 phút = 60 giây;
1 ngày = 24 giờ; 1 tuần = 7 ngày;
1 tháng có 30 hoặc 31 ngày ( tháng 2 có 28 hoặc 29 ngày)
1 năm thường có 365 ngày
1 năm nhuận có 366 ngày ( cứ 4 năm có một năm nhuận)
1 quý có 3 tháng; 1 năm có 4 quý.
1 thập kỉ = 10 năm; 1 thế kỉ = 100 năm; 1 thiên niên kỉ = 1000 năm.
2. Bảng đơn vị đo khối lượng
Tấn Tạ yến kg hg(lạng) dag G
1 tấn = 10 tạ 1 tạ =10 yến 1 yến =10kg 1kg = 10hg 1hg=10dag 1dag = 10g 1g
1tấn=100yến 1 tạ =100kg 1 yến=100hg 1 kg=100dag 1hg=100g
1 tạ = tấn
1 yến = tạ
1kg = yến 1hg= kg
11dag= hg
1g= dag
3. Bảng đơn vị đo độ dài
km hm dam m dm cm mm
1km=10hm 1 hm=10dam 1 dam=10m 1m = 10dm 1dm=10cm 1cm=10mm 1mm
1 hm= km 1dam = hm
1m= dam
1dm= m
1cm= dm
1cm= cm
4. Bảng đơn vị đo diện tích
km2 hm2 dam2 m2 dm2 cm2 mm2
1km2 = 100 hm2 1 hm2 = 100 dam2 1dam2 = 100m2 1m2 = 100dm2 1dm2 = 100cm2 1cm2 = 100 mm2
1 m2 = dam2 = hm2
1dm2 = m2
1 cm2= dm2 = m2