Giải SBT Toán 9 Bài 5: Giải bài toán bằng cách lập hệ phương trình (tiếp theo)

Bài 5: Giải bài toán bằng cách lập hệ phương trình

Bài 46 trang 14 Sách bài tập Toán 9 Tập 2: 

Hai cần cẩu lớn bốc dỡ một lô hàng ở cảng Sài Gòn. Sau 6 giờ có thêm năm cần cẩu bé (công suất bé hơn) cùng làm việc. Cả bảy cần cẩu làm việc 3 giờ nữa thì xong. Hỏi mỗi cần cẩu làm việc một mình bao lâu thì xong việc, biết rằng nếu cả bảy cần cẩu làm việc một mình bao lâu thì xong việc, biết rằng nếu cả bảy cần cẩu cùng làm việc từ đầu thì trong 4 giờ làm việc.

Lời giải:

Gọi x, y (giờ) lần lượt là thời gian mà một cần cẩu lớn và một cần cẩu nhỏ làm xong công việc. Điều kiện: y > x > 12

Như vậy, trong 1 giờ cần cẩu lớn làm được 1/x (công việc), cần cẩu nhỏ làm được 1/y (công việc).

Trong 1 giờ, hai cần cẩu lớn và năm cần cẩu nhỏ làm được 1 : 4 = 1/4 (công việc)

Ta có phương trình: 2/x + 5/y = 1/4

Hai cần cẩu lớn làm trong 6 giờ và năm cần cẩu nhỏ làm trong 3 giờ nữa thì xong việc, ta có phương trình:

12/x + 15/y = 1

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: 1x = 1/24 ⇔ x = 24

1y = 1/30 ⇔ y = 30

Giá trị của x và y thỏa điều kiện bài toán.

Vậy một cần cẩu loại lớn làm xong công việc trong 24 giờ, một cần cẩu loại nhỏ làm xong công việc trong 30 giờ.

 

Bài 47 trang 14 Sách bài tập Toán 9 Tập 2:

 Bác Toàn đi xe đạp từ thị xã về làng, cô ba Ngần cũng đi xe đạp, nhưng từ làng lên thị xã. Họ gặp nhau khi bác Toàn đã đi được 1 giờ rưỡi, còn cô ba Ngần đã đi được 2 giờ. Một lần khác hai người cũng đi từ hai địa điểm như thế nhưng họ khởi hành đồng thời. Sau 1 giờ 15 phút họ còn cách nhau 10,5km. Tính vận tốc của mỗi người, biết rằng làng cách thị xã 38km.

Lời giải:

Gọi x, y (km/h) lần lượt là vận tốc của bác Toàn và cô ba Ngần đi. Điều kiện: x > 0, y > 0.

Vì hai người đi ngược chiều nhau, bác Toàn đi 1 giờ 30 phút, cô ba Ngần đi 2 giờ thì gặp nhau nên ta có phương trình: 1,5x + 2y = 38

Quãng đường bác Toàn đi trong 1 giờ 15 phút là: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Quãng đường cô ba Ngần đi trong 1 giờ 15 phút là: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Sau 1 giờ 15 phút, hai người còn cách nhau 10,5km nên ta có phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

⇔ 5x + 5y = 110

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị của x và y thỏa điều kiện bài toán.

Vậy vận tốc của bác Toàn là 12km/h, vận tốc của cô ba Ngần là 10km/h.

Bài 49 trang 14 Sách bài tập Toán 9 Tập 2:

 Để sửa một ngôi nhà cần một số thợ làm việc trong một thời gian quy định. Nếu giảm 3 người thì thời gian kéo dài 6 ngày. Nếu tăng thêm 2 người thì xong sớm 2 ngày. Hỏi theo quy định cần bao nhiêu thợ và làm trong bao nhiêu ngày, biết rằng khả năng lao động của mỗi thợ đều như nhau?

Lời giải:

Gọi x (người) là số thợ cần thiết để sửa xong ngôi nhà, y (ngày) là thời gian dự định để làm xong. Điều kiện: x ∈N*, y > 0.

Số ngày công để hoàn thành công việc là xy (ngày).

Nếu giảm 3 người thì thời gian kéo dài 6 ngày, ta có phương trình:

(x – 3)(y + 6) = xy ⇔ xy + 6x – 3y – 18 = xy ⇔ 2x – y = 6

Nếu tăng thêm 2 người thì xong sớm 2 ngày, ta có phương trình:

(x + 2)(y – 2) = xy ⇔ xy – 2x + 2y – 4 = xy ⇔ -x + y = 2

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị của x và y thỏa điều kiện bài toán.

Vậy cần 8 người thợ làm việc trong 10 ngày thì xong ngôi nhà.

 

Bài 50 trang 15 Sách bài tập Toán 9 Tập 2: 

Cho hình vuông ABCD cạnh y (cm). Điểm E thuộc cạnh AB. Điểm G thuộc tia AD sao cho AG = AD + (3/2)EB. Dựng hình chữ nhật GAEF. Đặt EB = 2x (cm).

Tính x và y để diện tích hình chữ nhật bằng diện tích hình vuông và ngũ giác ABCFG có chu vi bằng 100 + 4√(13) (cm).

Lời giải:

Vì E thuộc cạnh AB nên EB < AB hay 2x < y

Ta có: AE = AB – EB = y – 2x (cm)

AG = AD + DG = y + (3/2) EB = y + (3/2) .2x = y + 3x (cm)

Diện tích hình chữ nhật bằng diện tích hình vuông nên ta có phương trình:

(y – 2x)(y + 3x) = y2

Theo định lí Pitago, ta có: FC2 = EB2 + DG2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chu vi ngũ giác ABCFG:

PABCFG = AB + BC + CF + FG + GA

= AB + BC + CF + FG + GD + DA

= y + y + x√(13) + y – 2x + 3y + y = x(1 + √(13) ) + 4y

Vì chu vi ngũ giác ABCFG bằng 100 + 4√(13) (cm) nên ta có phương trình:

x(1 + √(13) ) + 4y = 100 + 4√(13)

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị của x và y thỏa điều kiện bài toán.

Vậy x = 4 (cm), y = 24 (cm).