Giải SBT Toán 9 Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bài 1: Một số hệ thức về cạnh và đường cao trong tam giác vuông

Bài 1 trang 102 Sách bài tập Toán 9 Tập 1:

 Hãy tính x và y trong các hình sau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

a. Hình a:

Theo định lí Pi-ta-go, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo hệ thức liên hệ giữ cạnh góc vuông và hình chiếu của nó, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b. Hình b:

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

142 = y.16

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

x + y = 15 ⇒ x = 16 – y = 16 – 12,25 = 3,75

 

Bài 2 trang 102 Sách bài tập Toán 9 Tập 1:

 Hãy tính x và y trong các hình sau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9Lời giải:

a. Hình a:

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

x2 = 2.(2 + 6) = 2.8 = 16 ⇒ x = 4

y2 = 6.(2 + 6) = 6.8 = 48 ⇒ y = √48 = 4√3

b. Hình b:

Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có:

x2 = 2.8 = 16 ⇒ x = 4

 

Bài 3 trang 103 Sách bài tập Toán 9 Tập 1:

 Hãy tính x và y trong các hình sau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

a. Hình a:

Theo định lí Pi-ta-go, ta có:

y2 = 72 + 92 ⇒ y = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:

x.y = 7.9 ⇒ x = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b. Hình b:

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

52 = x.x = x2 ⇒ x = 5

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

y2 = x.(x + x) = 5.(5 + 5) = 50 ⇒ y = √50 = 5√2

Bài 4 trang 103 Sách bài tập Toán 9 Tập 1:

 Hãy tính x và y trong các hình sau:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

a. Hình a:

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

32 = 2.x ⇒ x = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 4,5

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

y2 = x.(x + 2) = 4,5.(4,5 + 2) = 29,25 ⇒ y = √29,25

b. Hình b:

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 4.5 = 20

Theo định lí Pi-ta-go, ta có:

y2 = BC2 = AB2 + AC2 = 152 + 202 = 625

Suy ra: y = √625 = 25

Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:

x.y = 15.20 ⇒ x = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 12

 

Bài 5 trang 103 Sách bài tập Toán 9 Tập 1:

 Cho tam giác ABC vuông tại A, đường cao AH. Giải bài toán trong mỗi trường hợp sau:

a. Cho AH = 16, BH = 25. Tính AB, AC, BC, CH

b. Cho AB = 12, BH = 6. Tính AH, AC, BC, CH

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có: AH2 = BH.CH

⇒ CH = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

BC = BH + CH = 25 + 10,24 = 35,24

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AB2 = BH.BC ⇒ AB = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

≈ 29,68

AC2 = HC.BC

⇒ AC = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 ≈ 18,99

b. Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AB2 = BH.BC ⇒ BC = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 24

CH = BC – BH = 24 – 6 = 18

Theo hệ thức liên hệ giữa các cạnh góc vuông và hình chiếu, ta có:

AC2 = HC.BC ⇒ AC = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 ≈ 20,78

Theo hệ thức liên hệ giữa đường cao và hình chiếu cạnh góc vuông, ta có:

AH2 = HB.BC ⇒ AH = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bài 6 trang 103 Sách bài tập Toán 9 Tập 1:

 Cho tam giác vuông với các cạnh góc vuông có độ dài là 5 và 7, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và các đoạn thẳng mà nó chia ra trên cạnh huyền.

Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giả sử tam giác ABC có Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 , AB = 5, AC = 7

Theo định lí Pi-ta-go, ta có:

BC2 = AB2 + AC2

⇒ BC = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo hệ thức liên hệ giữa đường cao và cạnh trong tam giác vuông, ta có:

AH.BC = AB.AC ⇒ AH = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu của nó, ta có:

AB2 = BH.BC ⇒ BH = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = BC – BH = Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

 

Bài 7 trang 103 Sách bài tập Toán 9 Tập 1: 

Đường cao của một tam giác vuông chia cạnh huyền thành hai đường thẳng có độ dài là 3 và 4. Hãy tính các cạnh góc vuông của tam giác này.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

Giả sử tam giác ABC có góc BAC = 90o, AH ⊥ BC, BH = 3, CH = 4

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AB2 = BH.BC = 3.(3 + 4) = 3.7 = 21 ⇒ AB = √21

AC2 = CH.BC = 4.(3 + 4) = 4.7 = 28 ⇒ AC = √28 = 2√7

Bài 8 trang 103 Sách bài tập Toán 9 Tập 1: 

Cạnh huyển của một tam giác vuông lớn hơn một cạnh góc vuông là 1 cm và tổng của hai cạnh góc vuông lớn hơn cạnh huyển là 4cm. Hãy tính các cạnh của tam giác vuông này.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

Giả sử tam giác ABC có góc (BAC) = 90o

Theo đề bài, ta có: BC – AB = 1 (cm)    (1)

AB + AC – BC = 4 (cm)    (2)

Từ (1) và (2) suy ra: BC – AB + AB + AC – BC = 4 + 1 = 5 (cm)

Theo định lí Pi-ta-go, ta có: BC2 = AB2 + AC2    (3)

Từ (1) suy ra: BC = AB + 1    (4)

Thay (4) vào (3) ta có:

(AB + 1)2 = AB2 + AC2

⇔ AB2 + 2AB + 1 = AB2 + 52

⇔ 2AB = 24 ⇔ AB = 12 (cm)

Thay AB = 12 (cm) vào (1) ta có: BC = 12 + 1 = 13 (cm)

Bài 9 trang 104 Sách bài tập Toán 9 Tập 1:

 Một tam giác vuông có cạnh huyền là 5 và đường cao tương ứng với cạnh huyền là 2. Hãy tính cạnh nhỏ nhất của tam giác vuông này.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải:

Giả sử tam giác ABC có góc (BAC) = 90o, AH ⊥ BC, BC = 5, AH = 2 và BH < CH

Ta có: BH + CH = 5     (1)

Theo hệ thức liên hệ giữa đường cao và cạnh huyền trong tam giác, ta có:

BH.CH = AH2 = 22 = 4    (2)

Từ (1) và (2) suy ra: BH = 1 và CH = 4

Theo hệ thức liên hệ giữa cạnh góc vuông và hình chiếu, ta có:

AB2 = BH.BC = 1.5 = 5

Suy ra: AB = 5

 

Bài 10 trang 104 Sách bài tập Toán 9 Tập 1:

 Cho một tam giác vuông. Biết tỉ số hai cạn góc vuông là 3 : 4 và cạnh huyền là 125 cm. Tính độ dài các cạnh góc vuông và hình chiếu của các cạnh góc vuông trên cạnh huyền.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9Lời giải:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9